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Abstract: Next-generation sequencing has revealed numerous genomic alterations that induce aberrant signaling 
activities in prostate cancer (PCa). Among them are pathways affecting multiple cancer types, including the PI3K/
AKT/mTOR, p53, Rb, Ras/Raf/MAPK, Myc, FGF, and Wnt signaling pathways, as well as ones that are prominent 
in PCa, including alterations in genes of AR signaling, the ETS family, NKX3.1, and SPOP. Cross talk among the 
oncogenic pathways can confer PCa resistance to therapy, particularly in advanced tumors, which are castration-
resistant or show neuroendocrine features. Various experimental models, such as cancer cell lines, animal models, 
and patient-derived xenografts and organoids have been utilized to dissect PCa progression mechanisms. Here, 
we review the current preclinical mouse models for studying the most commonly altered pathways in PCa, with an 
emphasis on their interplays. We highlight the power of genetically engineered mouse models (GEMMs) in trans-
lating genomic discoveries into understanding of the functions of these oncogenic events in vivo. Developing and 
analyzing PCa mouse models will undoubtedly continue to offer new insights into tumor biology and guide novel 
rationalized therapy.
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Introduction

Prostate cancer (PCa) is one of the most com-
mon malignancies in men of developed coun-
tries and is continuously increasing in deve- 
loping countries [1]. Prostatic intraepithelial 
neoplasia (PIN), the precursor lesion to adeno-
carcinoma, can be present in men of young 
age. Most patients with early stage PCa under-
go active surveillance, or are treated with ra- 
diation or radical prostatectomy. Androgen-de- 
privation therapy was first adopted by Huggins 
and Hodges in 1941 [2], and remains the first 
line treatment for advanced PCa. However,  
the inevitable recurrence of castration-resis-
tant prostate cancer (CRPC) after androgen-
deprivation therapy remains a major challen- 
ge, as treatment options are limited (Figure 1). 
Tumors that become androgen receptor (AR) 
independent may develop into neuroendocrine 
prostate cancer (NEPC), which is one of the 
most lethal subtypes of PCa [3]. Understanding 

the molecular mechanism of PCa progression  
is crucial for the development of effective 
therapies.

The prostate gland forms through budding fr- 
om the urogenital sinus during development [4]. 
The mature prostate contains ductal structures 
consisting of a stromal compartment and an 
epithelium, from which adenocarcinomas ari- 
se. The normal prostate epithelium is primarily 
comprised of stratified basal cells and luminal 
cells identifiable by specific markers, as well  
as interspersed rare neuroendocrine cells [5]. 
Multiple cancer genomics studies have reveal- 
ed the recurrent mutational events involved in 
PCa progression, such as MYC and AR amp- 
lification/overexpression, ETS family gene fu- 
sions, alterations in the TP53, PTEN, MAPK, 
and WNT pathways, and various mutations in 
FOXA1, SPOP, and genes of DNA repair and 
chromatin remodeling (Figure 1). Among them, 
TP53, WNT and AR pathway alterations are par-
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ticularly enriched in metastatic CRPC compar- 
ed to primary PCa, and are believed to be late 
events [6-12].

In order to understand how various mutations 
and dysregulated signaling pathways affect 
PCa progression, different experimental mod-
els have been utilized. PCa cell lines are tradi-
tionally the most widely used models in PCa 
research and have been discussed in detail 
elsewhere [13-16]. Recent development of the 
organoid technology has enabled better in vitro 
modeling of prostate tumors from patient biop-
sies which recapitulate the molecular diversity 
of prostate cancer subtypes [17, 18]. In addi-
tion, xenograft models, in particular patient-
derived xenografts (PDX) provide valuable re- 
sources to study PCa treatment responses and 
resistance [19, 20]. Finally, over the past two 
decades, genetically engineered mouse mod-
els (GEMMs) have been instrumental in reve- 
aling the functions of genetic alterations in pro-
moting PCa progression in vivo. The NIH es- 
tablished the Mouse Models of Human Cancer 
Consortium (MMCC) in 1999. Since then, GE- 

 The PI3K/Akt/mTOR axis is an important intra-
cellular signaling pathway that drives cellular 
growth and survival, and its hyper-activation is 
common across many types of cancers. Nearly 
50% of primary and metastatic PCas have ab- 
errant PI3K signaling activities, commonly th- 
rough copy-number loss of the PTEN tumor-
suppressor gene [7, 10, 11]. Although PI3K 
activation is not the earliest event in PCa initia-
tion, we discuss this pathway first since its ac- 
tivation is the single most extensively model- 
ed event in PCa mouse studies, often serving 
as a baseline model for studying oncogenic 
cooperation.

Pten loss results in constitutive activation of 
downstream targets including the Akt kinase 
family [21]. Initially, knockout mice were ge- 
nerated to investigate the function of Pten in 
cancer. While Pten-/- mice are embryonic leth- 
al, Pten-/+ mice developed multiple types of 
tumors, and hyperplasia/dysplasia in the pros-
tate [22, 23]. Later, the prostate-specific Pb- 
Cre4 line [24] was used for Pten conditional 
knockout, and the Pb-Cre; Ptenfl/fl model reli-

Figure 1. Overview of PCa stages, treatment options, and molecular altera-
tions. Cancer progression in the prostate undergoes different stages from 
hyperplasia to metastatic tumor. Timing and the temporary effect on the 
tumor volume are shown for different treatment options at various stages. 
Genomics studies have revealed major molecular alterations in PCa, shown 
in their likely order during cancer progression. Color code indicates whether 
the alteration is loss-of-function or gain-of-function.

MMs of PCa have evolved fr- 
om simple knockout and trans-
genic mice to complex condi-
tional manipulation on multiple 
genes of interest in prostate-
specific or cell-type-specific fa- 
shions. Similarities between 
mouse and human PCa pro-
gression are abundant, althou- 
gh differences such as the pr- 
opensity of bone metastasis 
also exist. Below, we summa-
rize GEMMs for the most fre-
quently altered pathways fo- 
und in human PCa (listed in 
Table 1) following the likely 
order of events during cancer 
progression, and discuss how 
they have contributed to our 
understanding of pathway in- 
teractions and therapeutic re- 
sistance mechanisms.

PI3K signaling pathway

PCa mouse models investigat-
ing the role of the PI3K/Akt/
mTOR axis
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Table 1. List of GEMMs analyzing the functions and interactions of major altered signaling pathways 
in PCa
Pathways References Mouse model Histology and interpretation
PI3K/Akt/mTOR [22, 23] Pten-/+ Hyperplasia/dysplasia, decreasing Pten level associated 

with worse phenotypes[30] Ptenhy/+

Ptenhy/-

[25] Pb-Cre; Ptenfl/fl Adenocarcinoma

[28, 29] ARR2PB-CreERT2; Ptenfl/fl

PSA-CreERT2; Ptenfl/fl

PIN/adenocarcinoma

[62, 63] CK5 (or CK14, CK8, Nkx3.1)-CreERT2; 
Ptenfl/fl

PIN/adenocarcinoma, with more aggressive phenotypes 
using luminal drivers

[34] Pb-myrAkt1 (MPAKT) PIN

[32] Pb-Cre; p110αfl/fl; Ptenfl/fl PIN

Pb-Cre; p110βfl/fl; Ptenfl/fl Impairment of PIN formation

[33] ARR2PB-MF-p110β PIN

[37] Pten-/+; Rictor-/+
Pb-Cre; Ptenfl/fl; Rictorfl/fl

Impairment of hyperplasia or PIN formation

[38] Pb-Cre; Ptenfl/fl; eIF4ES209A Impairment of hyperplasia or PIN formation

[40] Pten-/+; Pml-/+ Accelerated progression to PIN or adenocarcinoma

[41] Pten-/+; Tsc2-/+ Accelerated progression to PIN or adenocarcinoma

[39] Pb-Cre; Ptenfl/fl; 4EBP1-/-; 4EBP2-/- Accelerated progression to PIN or adenocarcinoma

[42] Pb-Cre; Ptenfl/fl; Pik3caH1047R/+ Accelerated progression to PIN or adenocarcinoma

PI3K & p27 [45] Pten-/+; p27Kip1-/+ Accelerated PIN

[46] MPAKT; p27Kip1-/- Adenocarcinoma, overcome of senescence

PI3K & TGFβ [52] Pb-Cre; Ptenfl/fl; Smad4fl/fl Metastatic tumor

[53] CK8-CreERT2; Ptenfl/fl; Tgfb2fl/fl Metastatic tumor

Other PI3K interactions [47] Pb-Cre; Ptenfl/fl; Her2KI Accelerated adenocarcinoma, overcome of senescence

[48] Pb-Cre; Ptenfl/+; Z/Sox9 Accelerated PIN

[49-51] Pb-Cre; Ptenfl/fl; Zbtb7afl/fl Overcome of senescence, resistance to castration

[56] Pb-Cre; Ptenfl/fl; Whsc1fl/fl Impairment of PIN formation

Pb-Cre; Ptenfl/fl; Whsc1OE/+ Metastatic tumor

Myc [70] Lo-Myc, Hi-Myc PIN/Adenocarcinoma

[72] Pb-Cre; Z-Myc PIN

PI3K & Myc Pb-Cre; Ptenfl/fl; Z-Myc Accelerated PIN/Adenocarcinoma

[75] Pb-Cre; Ptenfl/fl; Hi-Myc Accelerated PIN/Adenocarcinoma

PI3K & N-Myc [79] Pb-Cre; Ptenfl/fl; R26LSL-MYCN Neuroendocrine prostate cancer

Nkx3.1 [84-90] Nkx3.1-/+ or Nkx3.1-/-
PSA-Cre; Nkx3.1fl/fl

PIN

PI3K & Nkx3.1 [89-92] Nkx3.1-/-; Pten+/- Adenocarcinoma in aged mice

ETS [98, 99] ARR2PB-ETV1 PIN

[100, 101] ARR2Pb-ERG PIN of various degrees

[102, 103] ARR2Pb-ERG Mostly normal morphology

[104] Pb-Cre; R26ERG/ERG Mostly normal morphology

[105-107] Tg (TMPRSS2-ERG) Mostly normal morphology

PI3K & ETS [103] ARR2Pb-ERG; Pten+/- Accelerated progression to PIN/Adenocarcinoma

[104] Pb-Cre; Ptenfl/fl; R26ERG/ERG Accelerated progression to PIN/Adenocarcinoma

[105] KI (TMPRSS2-ERG); Pten-/+
KI (TMPRSS2-ERG); Pb-Cre; Ptenfl/fl

Accelerated progression to PIN/Adenocarcinoma

[106] ARR2Pb-TMPRSS2-ERG; Pten+/- Accelerated progression to PIN/Adenocarcinoma

[111] Pb-Cre; Ets2fl/fl; Ptenfl/fl Accelerated progression to PIN/Adenocarcinoma

SPOP [115] Pb-Cre; Spopfl/fl PIN, upregulation of AR and Myc

[116, 119] Pb-Cre; R26SPOP-F133V Normal

PI3K & SPOP Pb-Cre; Ptenfl/fl; R26SPOP-F133V Accelerated PIN

Wnt [123-128] MMTV-Cre, Nkx3.1-Cre, Pb-Cre or 
p63CreERT2/+; Ctnnb1L(ex3)/L(ex3)

Squamous metaplasia, PIN of varied degrees

[130] Pb-Cre; Apcfl/fl Adenocarcinoma

[131] Ubi-Cat Adenocarcinoma
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PI3K & Wnt [129] Pb-Cre; Ctnnbfl/fl; Ptenfl/fl No impairment of progression

Pb-Cre; Ctnnb1L(ex3)/L(ex3); Ptenfl/fl Accelerated adenocarcinoma

Wnt & p53/Rb [126] Pb-Cre; Ctnnb1L(ex3)/L(ex3); LPB-Tag Adenocarcinoma with neuroendocrine feature

MAPK [136] Pb-H-RasG12V Low grade PIN

Wnt & MAPK [127] Pb-Cre; K-RasLSL-V12/+

Pb-Cre; ctnnb1+/lox(ex3); K-RasLSL-V12/+

Adenocarcinoma

MAPK & p16 [137] iBRAF* Adenocarcinoma

PI3K & MAPK [138, 141, 142] Pb-Cre; Ptenfl/fl; K-RasLSL-G12D/+ Metastatic tumor

[143] Nkx3.1CreERT2/+; Ptenfl/fl; K-RasLSL-G12D/+ Metastatic tumor

FGF [152, 153] Pb-Fgf7, Pb-Fgf8, Pb-Fgfr2iib PIN, Fgfr1 and Fgfr2iib synergize to promote high grade 
PIN

[154-157] Pb-Fgfr1 PIN, Fgfr1 and Fgfr2iib synergize to promote high grade 
PIN

PI3K & FGF [158] ARR2PB-Fgf8b; Pb-Cre; Ptenfl/+ Metastatic tumor

Wnt & FGF [159] Ubi-Cat; JOCK1 Accelerated adenocarcinoma with reactive stroma

Tp53/Rb [43, 76, 169] Pb-Cre; p53fl/fl Normal

[170] Pb-p53R273H PIN

[171] Nkx3.1-Cre; p53LSL-R270H/R270H PIN

[176] Pb-Cre; Rbfl/fl Hyperplasia

[177-179] TRAMP, LADY Metastatic tumor with neuroendocrine feature

[169, 185] Pb-Cre; p53fl/fl; Rbfl/fl Neuroendocrine tumor

PI3K & p53/Rb [43, 50] Pb-Cre; Ptenfl/fl; p53fl/fl Accelerated adenocarcinoma, bypass of senescence and 
castration-induced apoptosis

[186, 187] Pb-Cre; Ptenfl/fl; Rb1fl/fl

Pb-Cre; Ptenfl/fl; Rb1fl/fl; p53 fl/fl

Metastatic tumor with neuroendocrine feature

AR [190] Pb-mAR Low grade PIN at old age

[191] Osr1-Cre; R26-LSL-AR PIN/adenocarcinoma

[192] Pb-AR-E231G PIN

[194] Pb-ARv567es Adenocarcinoma at old age

[195] ARR2PB-AR-V7 PIN

Wnt & AR [128, 215] Pb-Cre or p63CreERT2/+; Ctnnb1L(ex3)/+; 
R26hARL/+

Accelerated adenocarcinoma

PI3K & AR [212, 213] Pb-Cre; Ptenfl/fl; ARfl/Y AR dispensable for Pten tumor progression. PI3K & AR 
form reciprocal negative feedback loop.

[204, 214] Osr1-Cre; Ptenfl/fl; ARfl/Y

CK5-CreERT2; Ptenfl/fl; ARfl/Y

Nkx3.1CreERT2; Ptenfl/fl; ARfl/Y

AR dispensable for Pten tumor progression

ably developed invasive adenocarcinoma [25]. 
Studying murine cell lines derived from this 
model suggested that Pten loss bestows tu- 
mors androgen-independent proliferation [26]. 
In addition, this model also revealed that epi-
thelial Pten deletion may trigger the secretion 
of inflammatory cytokines to promote the ex- 
pansion of a subset of Gr-1+CD11b+ myeloid-
derived suppressor cells (MDSCs), leading to 
immune suppression and tumor progression 
[27]. It is worth noting that in this model Pten 
deletion occurs during prostate postnatal de- 
velopment due to the early timing of Pb-Cre 
activation. Indeed, when the inducible ARR2PB-
CreERT2 or PSA-CreERT2 lines were used, Pten 
loss at the adult stage yielded less aggressive 
prostate tumors [28, 29]. Besides timing, Pten 
expression level can heavily influence PCa pro-
gression. Using hypomorphic Pten mutant mi- 
ce Ptenhy, it was shown that decreasing Pten 

levels were correlated with progressively worse 
phenotypes (Ptenhy/+ > Pten+/- > Ptenhy/- > 
Ptenprostate-knockout) [30]. One possible mechani- 
sm of regulating Pten protein level is through 
the ubiquitin ligase NEDD4-1, which is strongly 
expressed in neoplastic areas of Ptenhy/- pros-
tates [31].

Other components of the PI3K/Akt/mTOR  
axis have been modeled (Figure 2). PI3K cla- 
ss IA catalytic subunit p110α (PIK3CA) or 
p110β (PIK3CB) is frequently overexpressed in 
PCa [11]. Interestingly, conditional knockout of 
p110β, but not p110α, impeded Akt phosph- 
orylation and Pten-loss-induced tumorigenes- 
is [32], while overexpressing activated p110β 
in transgenic mice induced PIN phenotypes 
[33]. A transgenic mouse model overexpress- 
ing activated Akt1 under the probasin promo- 
ter (MPAKT) was developed, and mice only 
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developed PIN in the ventral lobes [34]. Akt-
induced cancer initiation is dependent on 
downstream mTOR activation since treatment 
with the mTOR inhibitor RAD001 reversed the 
PIN phenotype in MPAKT mice [35]. mTOR is a 
protein kinase that exists in two distinct com-
plexes, the mTOR complex 1 (mTORC1) and 
mTORC2, and serves as a central regulator of 
cell metabolism and growth. The two complex-
es share certain protein subunits, with Rictor 
being one of the components in mTORC2 [36]. 
Double mutant mice Pten-/+; Rictor-/+ and 
Pb-Cre; Ptenfl/fl; Rictorfl/fl showed dramatically 
reduced tumor phenotypes compared to their 
respective models of single Pten mutant, sug-
gesting an essential role of mTORC2 in trans-
ducing the PI3K signal in Pten-loss tumors  
[37]. On the other hand, mTORC1 can phos-
phorylate 4E-BP1 and 4E-BP2, preventing them 
from binding and inhibiting eIF4E, a factor pro-

moting protein synthesis. To study the role of 
eIF4E, a knock-in model eIF4ES209A was built  
to mutate its only phosphorylation site, and  
this was sufficient to inhibit the Pten-loss-
induced PCa progression [38]. Interestingly, in 
Pb-Cre; Ptenfl/fl; 4EBP1-/-; 4EBP2-/- mice, 4E- 
BP1/2 knockout significantly accelerated PCa 
progression from Pten loss, suggesting 4E- 
BP1/2 are tumor-suppressing even under con-
stitutive mTORC1 activation, possibly due to 
their dephosphorylation under hypoxia condi-
tions [39]. The accelerated PCa progression 
compared to Pten loss alone was also seen in 
Pten-/+; Pml-/+ mice, which had reduced Akt 
antagonizer Pml [40], Pten-/+; Tsc2-/+ mice, 
which had reduced mTOR antagonizer Tsc2 
[41], and Pten conditional knockout mice that 
overexpressed a mutant p110α (Pik3caH1047R) 
[42]. Overall, these findings suggest that PCa 
progression is very sensitive to the activity lev-

Figure 2. Mouse models used to study the PI3K/AKT/mTOR axis in PCa. Major components of the PI3K/AKT/mTOR 
pathway and their molecular signaling relationships are shown. Pioneer papers that described the GEM models of 
the individual components or their interactions are listed.
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els of Akt and mTOR, and alterations of other 
components in the PI3K pathway are not func-
tionally redundant to Pten loss.

Models of other regulators that cooperate with 
the PI3K pathway

Although the PI3K/Akt/mTOR axis plays a piv-
otal role in driving prostate adenocarcinoma 
formation, Pten loss can induce p53-depen-
dent cell senescence response to prevent fur-
ther progression [43]. We will discuss this and 
other major pathway interactions in later indi-
vidual sections. Here, we briefly list a few other 
regulators that help keep the Pten-null tumors 
in check.

In many tissues, p27Kip1 functions as a negative 
regulator of cyclin-CDK activity to inhibit cell 
cycle progression. Disruption of p27Kip1 led to 
prostatic hyperplasia in p27Kip1-/- mice [44], 
and Pten-/+; p27Kip1-/+ mice displayed acceler-
ated neoplastic transformation [45]. Notably, 
p27Kip1 and senescence marker levels increased 
in MPAKT mice, and MPAKT; p27Kip1-/- mice 
developed invasive PCa, suggesting that a 
p27Kip1-driven checkpoint limits progression 
from PIN to PCa [46]. Another event that can 
overcome Pten-loss-induced cell senescence 
is the activation of the receptor tyrosine kinase 
Her2, as conditional expression of activated 
Her2 in Pb-Cre; Ptenfl/fl; Her2KI mice activated 
the MAPK pathway and led to faster progres-
sion [47].

Transcription factor Sox9 is expressed in cer-
tain human PCa specimens and is correlated 
with decreased survival. Prostate-specific Sox9 
overexpression was shown to cooperate with 
one copy loss of Pten in transformation in 
Pb-Cre; Ptenfl/+; Z/Sox9 mice [48]. One factor 
that can inhibit Sox9-dependent oncogenic 
pathways is Zbtb7a, as its homozygous deleti- 
on led to bypass of Pten-loss-induced cellular 
senescence [49] and resistance to castration 
in the Pten-null tumors [50]. Recently, loss of 
Zbtb7a was also shown to trigger the infiltration 
of Gr1+CD11b+ immune cells through CXCL5 
up-regulation in Pb-Cre; Ptenfl/fl; Zbtb7afl/fl mice 
to promote tumor progression [51].

Regarding PCa metastasis, TGFβ/Smad4 sig-
naling has been shown to serve as a barrier  
for Pten-null tumors. Pb-Cre; Ptenfl/fl; Smad4fl/fl 
mice developed metastasis to the lymph nod- 

es and lung with high penetrance [52], and 
inactivating TGFβ receptor in luminal cells in 
CK8-CreERT2; Ptenfl/fl; Tgfb2fl/fl mice enhanced 
metastasis and luminal cell dedifferentiation 
[53]. Another gene that was shown to drive 
Pten-null tumors towards metastasis is Whsc1, 
a histone methyltransferase overexpressed in 
a number of metastatic tumors [54, 55]. Pro- 
state-specific ablation of Whsc1 prevented tu- 
mor progression in Pb-Cre; Ptenfl/fl; Whsc1fl/fl 
mice, while its overexpression promoted tumor 
metastasis in Pb-Cre; Ptenfl/fl; Whsc1OE/+ mice 
[56]. Mechanistically, Pten-loss-induced Akt 
activation stabilizes Whsc1 from degradation 
via phosphorylation, and allows Whsc1 to tran-
scriptionally upregulate Rictor, forming a posi-
tive-feedback loop through mTORC2 to further 
enhance Akt activity [56].

PI3K-based mouse models for studying PCa 
cell of origin

It has been appreciated in multiple cancers 
that the cell of origin, defined as a normal cell 
that can give rise to a tumor upon transforma-
tion, plays a major role in determining tumor 
subtype and outcome [57]. Although PCa shows 
a predominantly luminal phenotype, tumors 
originating from basal and luminal cells may  
be distinguishable by their agressiveness and 
such information may be useful for prognosis 
[58]. Transplantation-based studies, in which 
basal and luminal cells were renal-grafted in 
immunodeficient mice, mostly reported basal 
cells to be more aggressive in cancer initiation 
[59-61]. However, the renal-graft assay intrinsi-
cally disfavors luminal cell growth, and lacks 
the intact tumor microenvironment in GEMMs. 
To test the cell of origin in situ, cell-type-specific 
inducible Cre lines have been used to knockout 
Pten in either basal or luminal cells of the 
mouse prostate. In one study, basal-lineage-
traced K14-CreERT2; Ptenfl/fl; mTmG mice and 
luminal-lineage-traced K8-CreERT2; Ptenfl/fl; 
mTmG mice were analyzed. Luminal cells were 
found to be more responsive to Pten-null in- 
duced mitogenic signaling, while basal cells 
underwent luminal differentiation before trans-
formation [62]. Similar results were also ob- 
served by comparing CK5-CreERT2; Ptenfl/fl; 
R26R-YFP/+ and Nkx3.1CreERT2/+; Ptenfl/fl; R26R-
YFP/+ mice, where luminal-derived tumors pro-
gressed faster and showed a gene signature 
predictive of poor outcomes in patients [63]. 
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Notably, the relative susceptibility of luminal 
cells to oncogenic transformation is not restrict-
ed to the Pten-loss models, as a comparative 
lineage-tracing study showed that luminal cells 
are favored to be the cell of origin for PCa in 
multiple genetic and chemical-induced models 
[64]. 

Early oncogenic events in PCa initiation

Recent research suggests that prostate carci-
nogenesis favors the dysregulation of cancer 
genes in defined orders [65]. In this section, we 
discuss how modeling some of the early onco-
genic events has led to a deeper understanding 
of the mechanisms underlying the transitions 
from normal prostate to PIN and subsequently 
to adenocarcinoma.

Myc up-regulation

The Myc transcription factor responds to di- 
verse mitogenic and developmental signals to 
coordinate expression of diverse genes impor-
tant for the orderly proliferation of somatic cells 
[66]. Myc expression is highly regulated, and 
changes of its expression level can influence 
somatic cell proliferation and oncogenesis [67, 
68]. Up-regulation of c-Myc appears to be an 
early event in human PIN [69], and the gene is 
within the most commonly amplified loci on 
8q24.21 in advanced PCa [10]. As a functional 
confirmation, transgenic mice of Myc overex-
pression under the probasin promoters (Lo-Myc 
and Hi-Myc) displayed PIN and progressed to 
invasive adenocarcinoma [70]. Two other mod-
els, the transgenic C(3)1-c-Myc [71] and the 
inducible Pb-Cre; Z-Myc mice [72] showed mu- 
ch milder PIN phenotypes, possibly due to the 
different expression levels or mouse backgr- 
ounds. Nevertheless, up-regulation of Myc ne- 
eds to cooperate with other oncogenic path-
ways for PCa to progress. Myc overexpression 
synergized with PIM1 kinase expression [73] 
and myrAkt expression [59, 74] in lentiviral-
transfected renal grafts. In GEMMs, Pb-Cre; 
Ptenfl/fl; Hi-Myc bigenic mice showed faster 
tumor progression than either of the single le- 
sion models [75]. Z-Myc also cooperates with 
Pten loss [72]. Interestingly, in Pb-Cre; Z-Myc; 
Ptenfl/+; p53fl/+ triple mutant mice, loss of the 
wild-type Pten allele occurred prior to p53 [76]. 
The order of these oncogenic events is consis-
tent with findings in humans, and suggests a 

greater selective advantage to the tumor cell  
by Pten loss than p53 loss.

Unlike c-Myc, N-Myc was proposed to be in- 
volved in the development of NEPC [77]. 
Indeed, introduction of N-Myc and activated 
AKT1 into human prostate cells was sufficient 
to transform them into NEPC in renal grafts 
[78]. In Pb-Cre; Ptenfl/fl; R26LSL-MYCN mice, over-
expression of N-Myc when Pten is lost led to 
the development of poorly differentiated, inva-
sive NEPC through the Ezh2-mediated transcripti- 
onal program [79]. This study, and others whi- 
ch are discussed later in the section of the p53 
and Rb pathways, provide excellent examples 
of using GEMM to understand the mechanism 
behind transition from CRPC to NEPC as a treat-
ment resistance.

Nkx3.1 down-regulation

The homeobox gene Nkx3.1 is a key regulator 
in prostate development and tumorigenesis 
and is located within a region on chromosome 
8p21.2 that frequently undergoes loss-of-het-
erozygosity in PIN lesions [80-82]. Although 
Nkx3.1 is rarely mutated in primary PCa [9],  
its down-regulation is correlated with PCa in- 
itiation and progression [83]. NKX3.1-/+, Nkx- 
3.1-/-, and PSA-Cre; Nkx-3.1fl/fl mice all devel-
oped PIN lesions [84-90], supporting an initiat-
ing role of Nkx3.1 loss-of-function in prostate 
tumorigenesis. Nkx3.1-/-; Pten+/- mice were 
prone to develop adenocarcinoma in aged mice 
[89-92], emphasizing the importance of the 
PI3K pathway in driving the progression of 
Nkx3.1-deficient tumors. In fact, loss of Pten 
alone leads to Nkx3.1 down-regulation at the 
transcriptional level [25, 93, 94]. Decreased 
Nkx3.1 expression was also observed in pros-
tate tumors but not PINs of Hi-Myc mice, raising 
the possibility that Myc gain and Nkx3.1 loss 
may be cooperating events in the PIN to ad- 
enocarcinoma transition [70]. Mechanistically, 
in cancer cell line and xenograft models, Nkx- 
3.1 has been shown to negatively modulates 
AR transcription and stabilize p53 to impede 
cancer progression [94]. 

Genomic rearrangement of ETS family genes

Fusions of the TMPRSS2 gene to the ETS fami- 
ly transcription factor genes ERG, ETV1, ETV4 
and ETV5 are frequent chromosome rearran- 
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gement events in human PCa, accounting for 
50-60% of all cases [95]. The most common 
gene fusion is TMPRSS2-ERG, which allows 
androgens to drive expression of the N-ter- 
minally truncated ERG protein in the prostate 
[95-97]. The presence of this fusion in benign 
prostatic hyperplasia and PIN cases indicates 
that it can be a relatively early event in prosta- 
te tumorigenesis.

Transgenic mouse models were established  
to functionally test the role of ETS genes. The 
ARR2Pb promoter was used to drive full-length 
and truncated ETV1, and these mice develop- 
ed PIN with high penetrance [98, 99]. Mixed 
results have been reported for mice overex-
pressing truncated ERG. Some studies show- 
ed that ARR2Pb-ERG mice displayed pheno-
types ranging from PIN to adenocarcinoma at 
old age, with higher levels of ERG expression 
correlating with more severe phenotypes [100, 
101]. Mechanistically, ERG was suggested to 
activate the YAP1/Hippo transcriptional pro-
gram, and a mouse model with prostate-specif-
ic activation of YAP1 developed phenotypes 
that were similar to ARR2Pb-ERG mice [101]. 
However, others reported largely normal pros-
tate morphology for the ARR2Pb-ERG model 
[102, 103], the Pb-Cre; R26ERG/ERG conditional 
expression model [104], and models in which 
the TMPRSS2-ERG fusion product is expressed 
[105-107]. Mouse strains, timing of analyses, 
the precise portion of the expressed protein, 
and transgene integration sites are all possible 
factors contributing to these varied outcomes. 
Rigorous quantitation of ERG levels and bet- 
ter control for mouse genetic background may 
help clarify, but TMPRSS2-ETS fusions certainly 
need to cooperate with other pathways for PCa 
to progress. Analysis of genetic alterations in 
human PCa showed that ERG rearrangement 
was significantly associated with PTEN loss 
[103, 106, 108]. Compound mouse models 
with ERG overexpression and Pten loss, such 
as ARR2Pb-ERG; Pten+/- [103], ARR2Pb-
TMPRSS2-ERG; Pten+/- [106], TMPRSS2-ERG 
knock-in; Pten-/+ and TMPRSS2-ERG knock- 
in; Pb-Cre; Ptenfl/fl [105], and Pb-Cre; Ptenfl/fl; 
R26ERG/ERG [104] mice, all showed accelerated 
PIN and adenocarcinomas progression compa- 
red to Pten-mutant mice, suggesting synergy 
between ERG overexpression and PI3K path-
way activation. Mechanistically, ERG may re- 
store AR transcriptional output in the Pten- 
loss background, and upregulate genes involv- 

ed in cell migration and angiogenesis [104], but 
differences in ERG- and ETV1-regulated tran-
scriptional programs have also been reported 
[105].

Interestingly, TMPRSS2-ERG fusion can be 
accompanied by the deletion of a highly con-
served interstitial region between these two 
genes [109, 110], raising the possibility that 
this event may have other oncogenic functi- 
ons besides ERG overexpression. Indeed, in a 
recent study comparing two TMPRSS2-ERG 
knock-in models, the model containing the 
interstitial deletion cooperated more strongly 
with Pten-loss [111]. One of the deleted genes 
is Ets2, and Pb-Cre; Ets2fl/fl; Ptenfl/fl mice dis-
played more aggressive phenotypes than Pb- 
Cre; Ptenfl/fl mice, suggesting the delete genes 
may have tumor suppressor functions [111].

SPOP mutations

Recurrent mutations in the gene SPOP, which 
encodes a Cullin-based E3 ubiquitin ligase sub-
unit, are found in ~10% of primary and advanc- 
ed PCa cases [8, 112]. Interestingly, SPOP 
mutations are mutually exclusive with ETS fa- 
mily gene rearrangements, defining a distinct 
molecular subtype of PCa [8, 9, 113]. SPOP 
mutations are significantly enriched in primary 
tumors [6], indicating that they are early events 
during PCa development [114].

In a loss-of-function model, Pb-Cre; Spopfl/fl 
mice developed PIN through upregulation of  
AR and c-Myc [115]. In another model, SPOP-
F133V, a common missense mutation found in 
human PCa, was conditionally overexpressed  
in Pb-Cre; R26SPOP-F133V mice [116]. Although 
SPOP-F133V alone was insufficient to drive 
tumorigenesis, it synergized with Pten loss, 
through increasing PI3K/mTOR signaling acti- 
vity and maintaining AR activity against PI3K-
mediated feedback inhibition [116], indicating 
SPOP-F133V has dominant negative function. 
Notably, there has been some controversy re- 
garding the tumor-suppressing mechanism of 
SPOP. Some studies reported that SPOP facili-
tates the ubiquitination and degradation of 
ERG, but not TMPRSS2-ERG [117, 118]. How- 
ever, the vast majority of human SPOP-mu- 
tant cancers do not express ERG, and Pb-Cre; 
Ptenfl/fl or +/+; R26SPOP-F133V mice showed no evi-
dence of ERG expression [119], questioning 
such regulation. Analysis of human PCa datas-
ets and zebrafish models of SPOP-F133V sug-
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gested that SPOP mutations drive prostate tu- 
morigenesis at least partly through impaired 
DNA double strand break repair and increased 
genomic instability [114].

Wnt signaling pathway

The canonical Wnt signaling pathway via nucle-
ar β-catenin regulates numerous processes in 
animal development, tissue homeostasis, and 
diseases [120, 121]. A recent integrated analy-
sis of primary and metastatic PCas found that 
10% of the cases harbored genomic alterati- 
ons in the Wnt/β-catenin pathway [6], and Wnt-
related alterations are significantly enriched in 
CRPCs [7, 11].

To investigate the potential role of the canoni-
cal Wnt pathway in prostate tumorigenesis, 
many groups used the Ctnnb1L(ex3)/+ mouse 
strain, in which Cre-mediated deletion of the 
third exon of the β-catenin gene results in a 
dominant stable protein [122]. Driven by the 
MMTV-Cre, Nkx3.1-Cre, Pb-Cre or p63CreERT2/+, 
such mouse models developed squamous me- 
taplasia and varied degrees of PIN [123-128]. 
These phenotypes progressed to adenocarci-
noma when β-catenin stabilization is combined 
with SV40-large T-antigen overexpression [126] 
or Pten deletion [129], suggesting synergy with 
the p53/Rb and PI3K pathways, respectively. 
Notably, although β-catenin level seems to 
increase in Pb-Cre; Ptenfl/fl tumors, there is no 
phenotypic difference between Pb-Cre; Ptenfl/fl 
and Pb-Cre; Ctnnbfl/fl; Ptenfl/fl tumors, suggest-
ing that β-catenin is dispensable for Pten loss-
driven PCa [129]. Besides Ctnnb1L(ex3)/+-based 
models, adenocarcinomas were also observ- 
ed in Pb-Cre; Apcfl/fl mice where the Wnt path-
way negative regulator Apc is inactivated [130], 
and in Ubi-Cat mice where β-catenin is activat-
ed through a genetically modified inducible Wnt 
co-receptor LRP-5 [131]. Taken together, these 
data imply Wnt/β-catenin pathway as a driv- 
ing force of prostate tumorigenesis. Further evi-
dence comes from renal-graft studies showing 
that manipulation of the stromal compartment 
by overexpressing Hmga2 or knocking out Tg- 
fbr2 enhances paracrine Wnt signaling to pro-
mote PCa initiation [132, 133]. Despite these 
progresses, the role of Wnt activation in pro-
moting PCa cell metastasis remains largely elu-
sive. Developing GEMMs that activate Wnt in 
advanced tumors should shed light onto this 
important question.

Ras/Raf/MAPK signaling pathway

The mitogen-activated protein kinase (MAPK) 
cascade relays extracellular cues to activate 
Ras and Raf for subsequent phosphorylation 
and activation of MEK1/2 and ERK1/2 (MA- 
PKs), which phosphorylate multiple targets reg-
ulating cell survival, proliferation, and differen-
tiation [134]. Although RAS and RAF mutati- 
ons are not frequent in PCa, the activity of the 
MAPK signaling pathway is often upregulated  
in both primary and metastatic PCas [9, 10, 
135]. RasG12V and BRafV600E activating muta-
tions are common in human cancers and are 
also present in PCa patients [10]. To model 
these oncogenic events in vivo, Pb-H-RasG12V 
transgenic mice [136] and Pb-Cre; K-RasLSL-V12/+ 
conditional activating mice [127] were devel-
oped, and both models exhibited low grade  
PIN. In the iBRAF* model where BRafV600E ex- 
pression is doxycycline-inducible under the In- 
k4a/Arf-/- background, mice developed pros-
tate adenocarcinomas [137]. Another hotspot 
mutation, K-RasG12D, is not found in human 
PCa. Nevertheless, it has been modeled in 
Pb-Cre; K-RasLSL-G12D/+ mice, which showed no 
sign of cancer development [138].

Aberrant Wnt signaling has been shown to  
synergize with Ras/Raf/MAPK activation, as 
Pb-Cre; ctnnb1+/lox(ex3); K-RasLSL-V12/+ mice devel-
oped invasive carcinoma [127]. But it is the 
cooperation of the PI3K and MAPK pathway 
activations in PCa progression that has been 
best characterized [139, 140]. For example, 
PCa in Pb-Cre; Ptenfl/fl; K-RasLSL-G12D/+ mice dis-
played epithelial to mesenchymal transition 
(EMT) and metastatic phenotypes [138, 141], 
which could be suppressed by inhibition of the 
chromatin remodeling protein HMGA2 [142]. 
Metastasis also occurred in Nkx3.1CreERT2/+; 
Ptenfl/fl; K-RasLSL-G12D/+ mice, and the ETS tran-
scription factor family member Etv4 was acti-
vated in response to activation of MAPK and 
PI3K pathways to promote this process [143]. 
Importantly, inhibition of mTOR by the drug 
RAD001 activates the MAPK pathway in both 
human samples and the Pb-Cre; Ptenfl/fl mo- 
del, suggesting a feedback loop between PI3K 
and MAPK pathways [144]. Recently, loss of 
Pml in Pten-null mouse tumors was shown to 
relieve this feedback inhibition and activate  
the MAPK pathway, resulting in an SREBP-de- 
pendent lipogenic program to promote metas-
tasis [145]. Collectively, these studies suggest 
the combined therapy using both mTOR and 
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MAPK inhibitors as a potential strategy for 
treating patients with advanced PCa. 

FGF/FGFR signaling pathway

The fibroblast growth factor (FGF) and its recep-
tor FGFR are one of the key stromal paracrine 
signals that regulate prostate epithelial devel-
opment and homeostasis. The pathway con-
sists of 18 FGF ligands, 4 receptor tyrosine 
kinases (FGFRs), and a pool of heparan sulfate 
proteoglycans (HSPGs) [146]. Although genom-
ic mutations in the FGF pathway are rare in 
human PCa, research using xenograft and cell 
line models has suggested the existence of 
abnormal autocrine and paracrine FGF loops in 
PCa [147]. For instance, enhancing paracrine 
FGF10 in urogenital sinus mesenchyme led to 
the formation of PIN and adenocarcinoma [60, 
148-151].

In earlier GEM models, FGF7 or FGF8 expres-
sion driven by the probasin promoter induced 
PIN formation [152, 153], while enforced ex- 
pression of a dominant negative FGFR2iiib in- 
duced hyperplasia with neuroendocrine feature 
[152]. PIN was also observed when FGFR1 or 
its mutant activated form was overexpressed 
using the probasin promoter [154-157], and 
combined expression of FGFR1 and FGFR2iib 
synergistically promoted high-grade PIN [155]. 
These models clearly demonstrated that aber-
rant FGF signaling environment is conducive  
to PCa initiation. Possible mechanisms include 
the activation of downstream MAPK/Erk signal-
ing [156], increase in EMT-associated Sox9 and 
changes in the Wnt signaling pathway [157].

Synergy of FGF signaling with the PI3K pathway 
was shown in ARR2PB-Fgf8b; Pb-Cre; Ptenfl/+ 
mice, which developed metastatic PCa [158]. 
Induced FGFR1 expression also synergized wi- 
th induced β-catenin expression to accelerate 
PCa progression, potentially through elevating 
stromal TGF-β signaling [159]. Recently, a mo- 
lecular study in human PCa cells and xeno-
grafts discovered that FGF signaling was able 
to sustain a portion of AR-null CRPC [160]. It  
will be interesting to develop new preclinical 
GEMMs to test the possibility that inhibition of 
FGF and MAPK pathways together may be effi-
cacious against PCas that are resistant to 
AR-directed therapies.

Tp53 and Rb pathways

The p53 and Rb pathways are almost univer-
sally involved in cancer [161]. The p53 pathway 
responds to stresses to initiates programs of 
cell cycle arrest, cellular senescence or apop- 
tosis [162]. Pathological analyses of clinical 
samples indicated that TP53 alterations are 
closely associated with PCa progression and 
occur mostly at later stages [163-167]. Com- 
prehensive molecular analyses also showed 
that TP53 mutations are highly enriched in 
metastatic PCa compared to primary PCa [9, 
11].

It is important to point out that p53 mutations 
can provoke activities involved in cell invasion, 
metastasis, proliferation and survival that are 
different to those resulting from simply loss of 
wild-type p53 [168]. Therefore, different p53 
mouse models may yield different phenotypes. 
Simple prostate-specific knockout of p53 in 
Pb-Cre; p53fl/fl mice largely had no tumorige- 
nic effect [43, 76, 169], while overexpressing  
a human hotspot mutant R273H (mouse 
R270H) in Pb-p53R273H mice [170] or Nkx3.1-
Cre; p53LSL-R270H/R270H mice [171] induced PIN. 
More mouse models have focused on how  
p53 alterations drive cancer progression. It has 
been proposed that p53 presents a PCa pro-
gression barrier and its alterations lead to 
genomic instability and evasion of senescence 
or apoptosis in clones that will become aggr- 
essive [65]. In support of this idea, p53-de- 
pendent cellular senescence and castration-
induced apoptosis were found to be bypassed 
in Pb-Cre; Ptenfl/fl; p53fl/fl mice [43, 50], and 
analyzing Pb-Cre; Z-Myc; Ptenfl/fl; p53fl/fl mice 
revealed that c-Myc expression shifted the  
p53 response from senescence to apoptosis 
by repressing the p53 target gene p21Cip1 [72, 
76]. Other potential oncogenic mechanisms 
induced by p53 loss include upregulation of 
hexokinase 2-mediated Warburg effect [172] 
as well as increased immune cell infiltration 
through CXCL17 upregulation [51]. Therefore, 
p53 serves as an essential checkpoint prevent-
ing Pten-loss-induced PCa progression.

The tumor suppressor gene Rb plays a pivotal 
role in cell-cycle regulation. It often undergoes 
copy number loss in both localized and ad- 
vanced PCas [10, 11, 173, 174], but is more 
commonly mutated in neuroendocrine prosta- 
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te cancers [175]. Prostate-specific deletion of 
Rb alone in Pb-Cre; Rbfl/fl mice only showed 
hyperplasia [176]. However, it is the NEPC phe-
notypes induced by the combined loss of Rb 
and p53 that should be brought to attention. 
The pioneer models of PCa, including the 
TRAMP model [177, 178] and the LADY model 
[179] used the Pb promoter to drive the expres-
sion of SV40 large T-antigen, which binds and 
inactivates p53 and Rb [180-182]. These mice 
showed rapid PCa progression with metasta-
sis, and tumors often had “small cell” and syn-
aptophysin positive phenotypes, suggesting 
they were neuroendocrine [183, 184]. Carci- 
nomas from the conditional double knockout 
model Pb-Cre; p53fl/fl; Rbfl/fl also displayed neu-
roendocrine differentiation [169, 185]. Recent- 
ly, two important studies characterizing the 
Pb-Cre; Ptenfl/fl; Rb1fl/fl and Pb-Cre; Ptenfl/fl; 
Rb1fl/fl; p53fl/fl mice suggested that Rb and p53 
loss depresses epigenetic reprogramming fac-
tors Ezh2 and Sox2, thereby facilitating linea- 
ge plasticity and metastasis of prostate adeno-
carcinoma initiated by Pten loss [186, 187]. 
These findings have important therapeutic im- 
plications, since tumors cells can acquire lin-
eage plasticity as a means to escape lumin- 
al-targeted androgen deprivation therapy, and 
epigenetic modulations such as Ezh2 inhibition 
may provide new approaches to treat NEPC.

AR signaling pathway

The androgen receptor (AR), a member of the 
steroid hormone receptor superfamily, is es- 
sential for normal prostate development, and 
supports growth of PCa. In the past decade, 
aberrant AR signaling has emerged as the cen-
tral driver of CRPC [3]. Alterations of the AR  
signaling through AR gene mutations, gene/
enhancer copy-number amplification, AR splic-
ing variants, and mutations of AR binding part-
ners are particularly frequent in CRPC [7, 9-11, 
188, 189].

GEMMs of prostate AR loss- or gain-of-function 
experiments are generally in agreement with 
human sequencing data, showing that manipu-
lation of AR signaling alone has subdued effect 
on early cancer initiation. In the Pb-mAR trans-
genic model where the AR transgene is driven 
by the rat probasin promoter, PIN lesions only 
appeared in old mice (> 1 year) [190]. PIN was 
also observed in an Osr1-Cre induced AR- 

overexpressing mouse model [191]. In another 
study, overexpressing either wild-type AR or 
AR-T857A (human T877A), an AR mutant pres-
ent in LNCaP cells that is responsive to non-
classical ligands, had no obvious phenotypes, 
while overexpressing AR-E231G, a mutant wi- 
th increased ligand-independent activity, indu- 
ced PCa formation [192]. However, it should be 
noted that AR-E231G was discovered in the 
TRAMP model [193], and has not been ob- 
served in human PCa. Recently, an ARv567es 
splice variant frequently found in human CRPC 
was shown to induce invasive adenocarcinoma 
in Pb-ARv567es transgenic mice by one year of 
age [194], and overexpression of AR-V7, a con-
stitutively active and androgen-independent  
AR splice variant, by the ARR2PB promoter 
induced PIN in mice [195]. These models offer 
opportunities for studying the mechanisms of 
AR-variant-driven PCa progression. Notably, in 
these studies AR overexpression started at the 
developmental stage, and the probasin pro- 
moter itself is regulated by androgen. Modeling 
AR overexpression in later cancer stages may 
prove to be beneficial.

On the other hand, AR loss-of-function model-
ing has also been performed by AR-floxed con-
ditional knockout using various Cre or CreER 
lines targeting the whole prostate or specific 
epithelial or stromal cell types [196-205]. The 
phenotypes were mixed and sometimes con- 
troversial, possibly due to the complex timing 
and spatial specificities of different Cre expres-
sion. Overall, although decreased androgen lev-
els in aging men has been shown to correlate 
with the increase of PCa incidence [206], the 
AR gene is not lost in human PCa. Therefore, 
while these loss-of-function models have shed 
light onto prostate development and normal 
homeostasis, their cancer-relevance is less 
clear.

The interplay of AR signaling with other path-
ways in PCa progression has been under exten-
sive investigation. In renal-graft experiments, 
overexpression of AR synergized with Akt, K- 
ras, FGF10, ERG, Src family kinases, and Hm- 
ga2 to promote PCa initiation and progression 
[60, 61, 132, 149, 207-211]. In GEMMs, the 
PI3K pathway and AR signaling pathway have 
been shown to form a reciprocal negative feed-
back loop to drive PCa survival. In Pb-Cre; 
Ptenfl/fl mice and human PCa cells, drug inhibi-



Prostate cancer mouse model review

2090 Am J Cancer Res 2019;9(10):2079-2102

tion of the PI3K pathway activates the AR sig-
naling output through increased HER3 kinase 
expression [212]. Pb-Cre; Ptenfl/fl tumors were 
also shown to suppress androgen-responsive 
genes by upregulating AR signaling co-regula-
tors EGR1, c-JUN, and EZH2, thereby rendering 
cancer cells less dependent on androgen [213]. 
On the other side, while AR is dispensable for 
tumor formation in Pb-Cre; Ptenfl/fl; ARfl/Y mice, 
deletion of AR or AR blockade upregulated Akt 
Activity in Pten-null cells by decreasing FKBP5- 
and PHLPP-mediated Akt dephosphorylation 
[212, 213]. These findings were also corrobo-
rated by models using the Osr1-Cre and basal- 
and luminal-specific CreER lines [204, 214]. 
Together, these studies provide strong ratio-
nale for combined therapy inhibiting both the 
PI3K and AR signaling pathways in PCa pati- 
ents. Recently, AR overexpression was shown 
to accelerate PCa progression in Pb-Cre or 
p63CreERT2/+ driven Ctnnb1L(ex3)/+; R26hARL/+ 
mice, where β-catenin was stabilized to acti-
vate the Wnt signaling pathway [128, 215]. In 
these Wnt and AR compound mice, tumor- and 
metastasis-promoting genes such as Spp1, 
Egr1, c-Myc, and Sp6 were upregulated. Fu- 
ture GEMMs that turn on AR signaling at later 
stages in combination with multiple other path-

or Rb loss of function and TMPRSS2-ERG 
fusion, are insufficient to initiate PCa if they 
occur early individually. However, these events 
may prime prostate cells for future oncogenic 
transformation by altering their downstream 
transcriptional programs. PI3K pathway activa-
tion in the form of Pten loss, on the other hand, 
has proved to be an essential step in many 
models for the transition from PIN to adenocar-
cinoma. Further progression to CRPC appears 
to require PI3K signaling cooperation with other 
pathways (Figure 3). For example, the disco- 
very of the reciprocal negative feedback loop 
between PI3K and AR signaling argues for the 
combined treatment targeting both pathways. 
The finding that loss of p53 and Rb at later 
stage further drives the tumor cells to undergo 
lineage switch provides new potential thera-
peutic avenues to inhibit disease progression 
towards neuroendocrine cancer. In comparing 
various GEMM studies, it is important to bear in 
mind that mouse strain background could be  
a complicating factor contributing to some of 
the controversies. For example, mice of the 
commonly used C57BL/6 genetic background 
are relatively tumor resistant [216]. PCa me- 
tastasis remains an underaddressed topic in 
GEMMs, as very few models show bone me- 

Figure 3. Using GEMMs to study pathway interactions in PCa progression. 
Diagram summarizes pathway interactions shown to promote PCa progres-
sion by studying GEMMs. The PI3K pathway activation has been the most 
extensively modeled event in PCa GEMMs and usually serves as a baseline 
model. Cooperation of PI3K pathway with other pathways is required for 
PCa to overcome various barriers and checkpoints to progress. Each line 
connecting two pathways indicates that at least one GEMM has been used 
to establish a functional correlation of the two pathways, through analyzing 
either phenotypes of double mutant mice or pathway activities in single mu-
tant mice. Pathway interactions revealed by cancer cell line and xenograft 
studies are not drawn.

way perturbations should con-
tinue to reveal the key to cas-
tration resistance in CRPC.

Conclusion

Development of the transgen-
ic, knock-out/in, and Cre-lox 
conditional expression tech-
niques in mice paved the way 
for building GEMMs for ans- 
wering key biological questi- 
ons in PCa progression. The 
intact tumor microenvironm- 
ent and fully functional im- 
mune system in GEMMs offer 
unique advantages to other ex- 
perimental models. Although 
mice rarely develop spontane-
ous PCa, modeling the recur-
rent genetic alterations of hu- 
man patients has provided a 
much clearer picture of PCa 
progression. It is increasingly 
appreciated that many of the 
molecular events, such as p53 
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tastasis, which is common in patients. While 
this may very well reflect intrinsic species dif- 
ferences, developing new models, such as la- 
te-stage activation of Wnt and AR variants mo- 
dels, may lead to new discoveries on the mech-
anisms of PCa metastasis. With the incorpora-
tion of new technologies such as CRISPR and 
single cell technqiues, we envision that the 
next-generation mouse models will help dis- 
sect the signaling cross talks in PCa with more 
sophisticated modeling of molecular events in 
more refined tissue space. 
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